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1 Introduction

The classical theory of transport processes is based on the Boltzmann transport
equation. The equation can be derived simply by defining a distribution function
and inspecting its time derivative. From this equation, many important results
can be derived. In addition to some of the textbook results from the Boltzmann
transport equation, it is still being used in many contemporary research projects
to model transport phenomena.

2 Theoretical Background

2.1 The Distribution Function

To understand the Boltzmann equation, it is important to understand the con-
cept of a distribution function. A distribution function describes how elec-
trons or other types of particles are distributed in real and momentum space
through the course of time. For our transport problem, we want to describe
a non-equilibrium distribution function since transport is an inherently non-
equilibrium problem. However, we can give a familiar example of a distribution
function for an equilibrium problem, the Fermi-Dirac distribution:

f(p) =
1

e[E(p)−µ]/kT + 1
(1)

where E(p) is the energy as a function of the momentum p, µ is the chemical
potential, k the Boltzmann constant, and T the temperature. Here we can
see how the particles are distributed as a function of momentum. We need to
extend this concept to non-equilibrium problems. We can define a phase-space
density for N interacting and indistinguishable particles by

D(r1,p1; . . . ; rN ,pN , t). (2)

This phase-space density is such that the quantity D(r1,p1; . . . ; rN , t)dΩ, where
dΩ is an infinitesimal element of phase space spanned by the coordinates and
momenta of all particles, is the probability that, at a time t, the particles can be
found in a volume dΩ centered at (r1,p1; . . . ; rN ,pN ). Since D is a probability
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density, it satisfies
∫

D(r1,p1; . . . ; rN ,pN , t)dΩ = 1 at all times. If dridpi is the
infinitesimal phase-space volume associated with particle i, the volume dΩ is

dΩ =
1

N !

N∏
i=1

dridpi (3)

where the factor 1/N ! accounts for the indistinguishability of the particles. This
phase-space density for all N particles is unwieldy to work with so we must figure
out a simpler quantity. We can integrate out all of the phase-volume associated
with all but one particle:

f(r,p, t) =
∫

D(r1,p1; . . . ; rN ,pN , t)
1

(N − 1)!

N∏
i=2

dridpi (4)

such that f(r,p, t)drdp is the number of particles at a time t found in a phase
space volume drdp around the phase space point (r,p). The total number of
particles, N , is thus defined by the quantity

N =
∫

f(r,p, t)drdp (5)

integrated over all allowed space and momenta. We have thus defined a practical
single particle non-equilibrium distribution function.

2.2 Derivation of the Boltzmann Equation

From the single particle non-equilibrium distribution function, we can derive
a transport equation of motion1. We start off by considering a set of N non-
interacting particles subject to an external periodic potential Vext(r, t), thus
having the Hamiltonian

H =
N∑

i=1

p2
i

2m
+ Vext(ri, t). (6)

Since we are dealing with non-interacting particles, we can use the single particle
distribution function f(r,p, t) with no approximations since the full distribution
function D(r1,p1; . . . ; rN ,pN , t) factorizes into a product of N one particle dis-
tribution functions. Since the particles are governed by Hamiltonian dynamics,
Liouville’s theorem of incompressible phase space flow applies. Liouville’s
theorem guarantees that the phase-space volume remains constant, as well as
the number of particles in a volume drdp. This is stated mathematically as

df(r,p, t)
dt

≡ ∂f

∂t
+

d∑
i=1

(
∂f

∂ri

∂ri

∂t
+

∂f

∂pi

∂pi

∂t

)
= 0 (7)

where d is the number of dimensions. This is simply the total derivative of
f(r,p, t). This is equivalently written as

∂f(r,p, t)
∂t

+
dr
dt

· ∇rf(r,p, t) +
dp
dt

· ∇pf(r,p, t) = 0 (8)

1much thanks to Massimiliano Di Ventra for sharing pages from his upcoming book “Elec-
tron Transport in Nanoscale Systems” which helped me greatly in writing about the theoretical
background of the Boltzmann equation
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where ∇ is the d-dimensional gradiant operator with respect to space or momen-
tum cooridnates as indicated. We now recall Hamilton’s equations of motion,

dri

dt
=

∂H

∂pi
;

dpi

dt
= −∂H

∂ri
, (9)

where the index i = 1, . . . , d and H is the single particle Hamiltonian, H =
p2/2m + Vext(r, t). We can thus arrive at

∂f(r,p, t)
∂t

+
p
m
· ∇rf(r,p, t)−∇rVext(r, t) · ∇pf(r,p, t) = 0 (10)

For non-interactiong atoms in a periodic lattice, this equation would completely
describe the phase-space dynamics of a system of particles [1]. In reality though,
we must be able to quantify the motion associated with interacting particles
in a real lattice. Consider a system of electrons interacting via a Coulomb
interaction which is just a two-particle potential, U(|r− r′|), which depends on
the relative distance between the electrons. Even without the electron-electron
interaction, the ionic lattice may also have impurities or crystal defects as well
as there being intrinsic deviations from periodicity in a perfect crystal due to
thermal vibrations of the ions. As it turns out, the effect due to vibrations in the
ionic lattice dominates at high temperatures and impurity or defect scattering
dominates in crystals at low temperatures. Electron-electron scattering due to
the Coulomb interaction actually plays a relatively minor role in a lot of systems.
Nonetheless, the presence of these interactions changes particle momenta via
scattering processes such that the particles can scatter in and out of the phase
space volume drdp. The distribution function f(r,p, t) is no longer a conserved
quanity and the condition df/dt = 0 no longer applies. We can account for
the scattering in and out of phase space volume by balancing the time rate of
change of the distribution function with a time rate of change associated with
the collisions. This can be expressed mathematically as

d

dt
f(r,p, t) =

(
∂f(r,p, t)

∂t

)
collisions

≡ I[f ] (11)

where I[f ] is defined to be the collision integral and is a functional of the
distribution function. We can now arrive at the final form of the Boltzmann
transport equation

∂f(r,p, t)
∂t

+
p
m
· ∇rf(r,p, t)−∇rVext(r, t) · ∇pf(r,p, t) = I[f ]. (12)

2.3 The Collision Integral

Our main problem now is to come up with a suitable form of the collision inte-
gral. For a given interaction potential, one can calculate the collision integral
exactly, but in practice these are not very useful for practical applications. For
example, for a two-body potential one finds the collision integral depends on a
two-particle distribution function, f2 (this time integrate the full distribution
function over all but two particles). However, the equation of motion for f2

depends on the three-particle distribution function, f3. Likewise, f3 depends
on f4, and so on. This infinite hierarchy of coupled equations is know as the
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BBGKY Hierarchy. One needs to come up with a more suitable way to
describe the collision integral, hopefully only involving the single particle dis-
tribution function.

We need to find an expression for the probability per unit time that an
electron with momentum p will suffer some collision. This quantity is 1/τ(p)
which is simply one over the time it takes between collisions as a function of
momentum known as the relaxation time. This probability per unit time is
defined in terms of a quantity Wp,p′ where Wp,p′dtdp′ is the probability in an
infinitesimal time interval dt that an electron with momentum p is scattered
into any one of the group of levels contained in the infinitesimal p-space vol-
ume element dp′ about p′, assuming these levels are all unoccupied and not
forbidden by the exclusion principle. The particular form of Wp,p′ depends on
the particular scattering mechanism being described. Given this definition of
Wp,p′ , the actual rate of transition must be reduced by the fraction of these
levels that are actually unoccupied since transitions into unoccupied levels are
forbidden by the exclusion principle. This fraction is simply 1− f(r,p′, t). The
total probability is then given by summing over all final momentums p′:

1
τ(p)

=
∫

dp′Wp,p′ [1− f(r,p′, t)]. (13)

We need to now figure out how the distribution function changes in time due
to the collisions out of the infinitesimal element dp. Note that because dt/τ(p)
is the probability that any electron in the neighborhood of p is scattered in the
time interval dt, the total number of electrons per unit volume in dp about p
that suffer a collision is just dt/τ(p) times the number of electrons per unit
volume in dp about p, f(r,p, t)dp. Thus we find the that contribtuion to the
collision integral by particles scattering out of dp in the neighborhood of p is

I[f ]out = −f(r,p, t)
τ(p)

. (14)

Since electrons can be scatter either into or out of dp by collisions, the collision
integral I[f ] contains the sum of two terms representing this scattering in and
out of the infinitesimal momentum element dp. We write

I[f ] = −
∫

dp′ {Wp,p′f(r,p, t) [1− f(r,p′, t)]−Wp′,pf(r,p′, t) [1− f(r,p, t)]}

(15)
where the contribution from I[f ]in is included and has the same structure as
I[f ]out except for the interchange of p and p′. I have defined a general form
for the collision integral, but this can still be unwieldly to work with so we can
make a further approximation called the relaxation-time approximation to
rewrite the collision integral as

I[f ] = − [f(r,p, t)− feq(r,p)]
τ(p)

(16)

where feq(r,p) is the local equilibrium distribution function and τ(p) here is a
specified function of p and does not depend on the distribution function. The
Boltzmann transport equation can now be written as

∂f(r,p, t)
∂t

+
p
m
· ∂f(r,p, t)

∂r
+ Fext(r, t) ·

∂f(r,p, t)
∂p

= − [f(r,p, t)− feq(r,p)]
τ(p)

(17)
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where I have redefined

∇r ≡
∂

∂r
, ∇p ≡

∂

∂p
, −∇rVext(r, t) ≡ Fext(r, t).

This approximation assumes that the rate at which f returns to the equilibrium
distribution, feq is proportional to the deviation of f from feq. The primary as-
sumption behind this is that scattering merely serves to drive a non-equilibrium
distribution back towards thermal equilibrium. We can see this by considering
the following case. Starting in a system far from equilibrium, let us assume that
the distribution f and external potential do not have large spatial variations.
If this is the case, the collision integral I[f ] dominates the dynamics as one can
see from the form of the Boltzmann equation. Thus, during this transient time,
the Boltzmann equation is approximately

∂f(r,p, t)
∂t

≈ I[f ]. (18)

Employing the rexation-time approximation to the collision integral, we arrive
at

∂f(r,p, t)
∂t

≈ − [f(r,p, t)− feq(r,p)]
τ

(19)

which has the solution

f(r,p, t) = feq(r,p) + [f(r,p, t = 0)− feq(r,p)] e−t/τ . (20)

From this, we can see that the system approaches local equilibrium in a time on
the order of the relaxation time (hence the name). After this initial transient
state, the other terms in the Boltzmann equation become comparable to the
collision integral.

Once we find a suitable expression for the distribution function, we can
calculate the electron density,

n(r, t) =
∫

dpf(r,p, t) (21)

and the current density,

j(r, t) =
∫

dp
p
m

ef(r,p, t), (22)

where e is the elementary charge. These are two very important quantities in
the study of transport phenomena.

3 The Boltzmann Equation in Practice

Many classical results can be derived or supported by the Boltzmann equation.
Some simple examples will be presented in the following sections. However,
even contemporary researchers still sometimes employ the Boltzmann equation
when trying to understand transport properties in more complex systems.
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3.1 1D Particle Diffusion

We can think about using the Boltzmann equation for some very simple calcu-
lations. For the sake of simplicity, we consider an equilibrium function which
only has dependence on the x-direction, i.e. f(r,p, t) → f(x, px, t). We can
write the collision integral as(

∂f(x, px, t)
∂t

)
collisions

=
∂f(x, px, t)

∂x

∂x

∂t
=

px

m

(
∂f

∂x

)
(23)

to arrive at
px

m

(
∂f(x, px, t)

∂x

)
= − [f(x, px, t)− feq(x, px)]

τ
(24)

with the relaxation time approximation employed. Then we can say that to first
order,

f1(x, px) ' feq(x, px)− px

m
τ

(
∂feq(x, px)

∂x

)
(25)

with ∂f(x, px, t)/∂x replaced with ∂feq(x, px)/∂x. The equilibrium distribution
function can be a variety of things, but often the classical distribution

feq(x, px) = e(µ(x)−E(px))/kT , (26)

or, in the case of electrons, the Fermi-Dirac distribution

feq(x, px) =
1

e[E(px)−µ(x)]/kT + 1
(27)

is employed. See Appendix F of [2] for simple calculations involving the 1D
Boltzmann equation and diffusion.

3.2 Electrical Conductivity

If one assumes the external potential is that of an electric field, then with a
Fermi-Dirac distribution at constant T employing the relaxation time approxi-
mation, Eq.[17] becomes(

∂feq

∂E

)
p
m
· eE = − [f − feq]

τ
(28)

where E is the energy, e is the charge, and we have used p
m = ∂E

∂p to transform
one of the derivatives. We have also assumed that the distribution function, f ,
does not depend explicitly on the time, t. Now we can write the distribution
function f as

f = τfeq − p
m
· eτE

(
∂feq

∂E

)
. (29)

Now we can use the expression for the current density, Eq.[22], to write

J =
∫

dp
p
m

e

[
τfeq − p

m
· qτE

(
∂feq

∂E

)]
. (30)

There is no current density associated with the equilibrium distribution function,
feq, obviously, and we can write the current density as

J =
1

4π3h̄m

∫ ∫
e2τp (p ·E)

(
−∂feq

∂E

)
dS

p
dE (31)
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where we have transformed the integral over the momentum space volume to
one over surfaces of constant energy. For the details, please see [5]. We can
further say that, at least for a metal, the function (−∂feq/∂E) behaves like a
delta function at the Fermi level, so we are left with an integral over the Fermi
surface

J =
1

4π3

e2τ

h̄m

∫
p pdSf

p
·E. (32)

We can compare this with the macroscopic form of Ohm’s Law

J = σ ·E (33)

and identify the conductivity tensor in dydadic notation as

σ =
1

4π3

e2τ

h̄m

∫
p pdSf

p
. (34)

This is an example of one of the classical results one can obtain from the Boltz-
mann equation. It can be compared with results derived from other theories
such as the Kubo formalism. Additionally by adding in a magnetic field, one
can derive the Hall effect from the Boltzmann transport equation. See [5] for
the details of this.

3.3 Boltzmann Transport for Spin Valves

In the previous section, I presented a textbook example of what you can calculate
with the Boltzmann transport equation. However, even today, this century old
equation is finding applications in modern research. In a 2000 paper by Maclaren
et al. [3] called “First Principles Based Solution to the Boltzmann Transport
Equation for Co/Cu/Co Spin Valves” the authors study transport in layered
magnetic materials. The approach they employ is used to study the variation
in giant magnetoresistance (GMR) with individual layer thickness.

The particular application of the Boltzmann equation used in this paper is
to study transport in spin valves. A spin valve is a device consisting of two
or more conducting magnetic materials, that alternates its electrical resistance
depending on the alignment of the magnetic layers, in order to exploit the giant
magnetoresistance effect. A spin valve consists of two magnetic layers separated
by a spacer layer chosen to ensure that the coupling between magnetic layers is
weak. The magnetic orientation of one layer is also “pinned” in one direction by
adding a fourth layer: a strong antiferromagnet. When a weak magnetic field,
such as that from a bit on a hard disk, passes beneath such a structure, the
magnetic orientation of the unpinned magnetic layer rotates relative to that of
the pinned layer, generating a significant change in electrical resistance due to
the GMR effect. Spin valve GMR is, in fact, the most useful form of GMR and
is used in essentially all hard disk drives.
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Solving the Boltzmann transport equation is one part in the step of under-
standing how GMR varies with layer thickness. The details can be found in
[3, 4]. The Boltzmann transport equation is used within each distinct layer
to study CIP (Current In the Plane) and CPP (Current Perpendicular to the
Plane) transport for the spin valves. It is hard to predict the accuracy of the
Boltzmann equation in this problem because many additional theoretical tech-
niques and procedures have gone into producing the results. Nonetheless, the
paper presented the variation of GMR with Cu layer thickness. As one can see
in the graph, there is good agreement up until about 2.5 nm.

4 Conclusion

The Boltzmann transport equation can be derived by considering how a distri-
bution function changes in time. There are various approximations and phe-
nomenological approaches which make the equation useful and soluable for sim-
ple systems. The equation can describe macroscopic phenomena such as the
electrical conductivity, Hall effect, and diffusion process. It has proved fruitful
not only for the study of the classical gases Boltzmann had in mind, but also,
properly generalized, for other systems such as electron transport, photon trans-
port in superfluids, and radiative transport in planetary and stellar atmospheres.
It still has much relevance to modern transport theory. While the Boltzmann
transport equation is more of a macroscopic, statistical approach to transport,
especially relevant to diffusion processes, modern transport techniques such as
time-dependent density functional theory (TDDFT) capture more of the
microscopic picture including the quantum nature of the problem. Despite its
limitations, the Boltzmann equation still has much use and applicability.
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