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In this paper, I discuss open quantum systems in terms of the Lindblad quantum master equa-
tion, quantum operations, and the Schrödinger-Langevin equation. These allow one to study open
quantum systems in a systematic way, as long as certain assumptions apply to the system being
studied. A formal derivation of the Lindblad quantum master equation, which describes the time
evolution of density matrices, is presented, and an example demonstrating its utility is included.
This example is also discussed in terms of a quantum operation. Quantum operations are briefly
introduced and their use in relation to the Lindblad master equation is discussed. Additionaly,
the inability of the Lindblad master equation to describe mixed state quantum systems in which
the Hamiltonian is a function of the microstates warrants the Schrödinger-Langevin equation. A
derivation of the Schrödinger-Langevin equation is presented using an ansatz and imposing that the
average norm of the microstate is conserved.

Quantum mechanics is currently the core theory for
understanding the laws of physics. Essentially every
physicist is familiar with quantum mechanics relating to
closed systems which obey so-called unitary evolution.
Although many important conclusions about our uni-
verse can be derived when considering closed quantum
systems, it is a simple fact that in the real world, there
are no perfectly closed systems, except perhaps the uni-
verse as a whole. Open quantum systems, in contrast
to closed quantum systems, cannot, in general, be rep-
resented in terms of a unitary time evolution. When
dealing with open quantum systems, it is often useful to
formulate an equation of motion which involves a sys-
tem’s density matrix or statistical operator. This
type of equation of motion is called a quantum master
equation.

The density matrix is useful for characterizing a mixed
state, that is a system which contains a number of quan-
tum states all weighted by a classical probability (this
is in contrast to the intrinsic probabilistic nature of a
quantum state), pi. It contains all the physically relevant
information one can possibly obtain about an ensemble.
The density matrix is defined as

ρ̂(t) =
∑

i

pi|ψi(t)〉〈ψi(t)| (1)

where
∑

i pi = 1 and the |ψi(t)〉 are a complete set of nor-
malized state vectors called microstates which evolve in
time according to the Schrödinger equation (note that I
set h̄ = 1 here and for the rest of this paper)

i
d

dt
|ψ(t)〉 = Ĥ(t)|ψ(t)〉. (2)

The time evolution of a microstate is given by |ψ(t))〉 =
Û(t, t0)|ψ(t0)〉 where Û(t, t0) is the time translation
operator defined as

Û(t, t0) = T̂

{
exp

[
−i

∫ t

t0

dt′Ĥ(t′)
]}

(3)

and T̂ denotes the chronological time-ordering operator.
It is important to explicitily distinguish between a mixed
state and pure state. A pure state or pure ensemble is
one in which pi = 1 for some |ψi(t)〉 with i = n for
example and pi = 0 for all other conceivable state kets.
The density operator is written as ρ̂ = |ψn(t)〉〈ψn(t)| for
this pure state. A mixed state is one in which there is
more than one non-zero pi for an ensemble. Nonetheless,
all density matrices must have the following properties,

ρ̂† = ρ̂ T r {ρ̂} = 1 〈ψi|ρ̂|ψi〉 ≥ 0 ∀ |ψi〉 ε H, (4)

that is, the density operator must be Hermitian, have
unit trace, and be positive semi-definite. By taking a
time derivative of ρ̂(t), defined by Eq.(1) and using the
Schrödinger equation, Eq.(2), I arrive at

d

dt
ρ̂(t) = −i

∑
i

pi

[
Ĥ|ψi〉〈ψi|+ |ψi〉〈ψi|Ĥ

]
. (5)

As long as Ĥ is not a function of the microstates, |ψi〉,i.e.
Ĥ 6= Ĥ(|ψi〉), one can take Ĥ out of the sum and write
this as

d

dt
ρ̂(t) = −i

[
Ĥ(t), ρ̂(t)

]
, (6)

which is the Liouville-von Neumann equation. This
must be supplied with an initial condition, ρ̂(t0). The
solution is

ρ̂(t) = Û(t, t0)ρ̂(t0)Û†(t, t0) (7)

The Liouville-von Neuman equation gives the dynamics
of a closed quantum system. We would like to extend
this equation to include open quantum systems.

First, we need to decide on what we mean by an open
quantum system. We would like to consider the interac-
tion of our system, denoted by S, with an external envi-
ronment or reservoir, denoted by R. The Hilbert space of
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the total system is given by the tensor product, denoted
by ⊗, of the Hilbert space of the total system and the
reservoir. Thus, I can write the Hamiltonian in the form

Ĥ = ĤS ⊗ ÎR + ÎS ⊗ ĤR + ĤSR (8)

where ÎR and ÎS are the identity operators in their re-
spective Hilbert spaces, and ĤS is the Hamiltonian of the
open system S, ĤR is the Hamiltonian of the environ-
ment R, and ĤSR is the Hamiltonian describing the in-
teraction between the system and the environment. Also,
we assume that

[
ĤS ⊗ ÎR, ÎS ⊗ ĤR

]
= 0. We could, in

principle, use Eq.(6), to determine the dynamics of the
closed quantum system containing the system and re-
servior. However, this requires worrying about a bunch
of extra degress of freedom associated with the reservoir.
We would be determining the detailed dynamics of the
reservoir, which we are not interested in and which, in
principle, are incredibly difficult to follow. We would like
to find a new equation of motion for only the system, but
we would like to include the effects of the reservoir. If the
system is composed of noninteracting identical particles,
we can write

ĤS ⊗ ÎR =
∑

n

εnc
†
ncn (9)

with
{
cn, c

†
n′

}
= δnn′ and {cn, cn′} = 0 for fermions and[

cn, c
†
n′

]
= δnn′ and [cn, cn′ ] = 0 for bosons. Assume

ĤSR =
∑

n 6=n′ fnn′c†ncn where the fnn′ contains the op-
erators for R and satisfy fnn′ = f†n′n. Note that ĤS ⊗ ÎR
is in the Hiblert space of S ⊗ R and the interaction is
expanded in terms of the eigenstates of ĤS ⊗ ÎR includ-
ing off-diagonal terms introduced by the operator fnn′ .
The density matrix ρ̂R of the reservoir can be expanded
in terms of the eigenlevels |r〉 of ÎS ⊗ ĤR

ρ̂R =
∑

r

F (Er)|r〉〈r| (10)

where Er is the eigenvalue corresponding to |r〉 and
F (Er) is the thermal equilibrium distribution. Let ρ̂S(t)
be the density matrix of the system and ρ̂C(t) be the
total density matrix, then

ρ̂S(t) =
∑

r

〈r|ρ̂C(t)|r〉 = TrR {ρ̂C(t)} . (11)

where TrR denotes the partial trace over the reservoir
degrees of freedom. Thus, we can recover the density
matrix of the system we are interested in by integrating
over the reservoir degress of freedom. Additionally, at
t = 0, we assume

ρ̂C(t) = ρ̂S(0)⊗ ρ̂R, (12)

thus saying there is no interation at exactly time zero.
We choose Ĥ0 = ĤS ⊗ ÎR + ÎS ⊗ ĤR to be the unper-
turbed Hamiltonian, and using the time translation op-
erator defined perviously, we can write, in the interaction
picture

i
∂

∂t
Û (I)(t, t0) = Ĥ

(I)
SR(t)Û (I)(t, t0) (13)

where Ĥ
(I)
SR(t) =

∑
n 6=n′ f

(I)
nn′(t)ei(εn−εn′ )tc†ncn′ with

f
(I)
nn′(t) = ei(ÎS⊗ĤR)tfnn′ei(ÎS⊗ĤR)t. At t > 0 we have

ρ̂
(I)
C (t) = Û (I)(t, 0)ρ̂C(0)Û (I)†(t, 0). (14)

After expanding ρ(I)
S (t) to second order with respect to

ĤSR and assuming that TrρRfnn′ = 0 we have

ρ̂
(I)
S (t)− ρ̂S(0) = it [ρ̂S(0),ΣR]− t {ρ̂S(0),ΣI}+

∑
r,r′

F (ER)×

∫ t

0

∫ t

0

∑
m6=m′

∑
n 6=n′

dt1dt2e
i[(εn−εn′ )t1+(εm−εm′ )t2]〈r|f (I)

nn′(t1)|r′〉

〈r′|f (I)
mm′(t2)|r〉c†ncn′ ρ̂S(0)c†mcm′

(15)

where ΣR and ΣI are the real and imaginary parts of

Σ =
i

t

∑
r,r′

F (ER)
∫ t

0

dt1

∫ t1

0

dt2〈r|Ĥ(I)
SR(t1)|r′〉〈r′|Ĥ(I)

SR(t2)|r〉

(16)
If one assumes that the reservoir is Markovian or “mem-
oryless” that is, in more precise language that there is no
correlation between different transitions, one can say that
only those terms with (n, n′) = (m,m′) do not vanish in
the expansion. We can then set

wn′n =
∑
r,r′

F (ER)|〈r|fnn′ |r′〉|2δEn+Er,En′+Er′ (17)

as the transition rate for particles to jump from n to n′,
such that

ΣI =
1
2

∑
n 6=n′

wn′nc
†
ncn′c†n′cn. (18)

We ignore ΣR [1], and arrive at an equation in the
Schrödinger picture

d

dt
ρ̂S(t) =− i

[
ĤS , ρ̂S(t)

]
− 1

2

∑
n 6=n′

{
Â†

n′nÂn′n, ρ̂S(t)
}

+

∑
n 6=n′

Ân′nρ̂S(t)Â†
n′n.

(19)

where we have set Ân′n =
√
wn′nc

†
n′cn. This is the Lind-

blad master equation. It is more commonly written in
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a form where all of the operators are expanded in terms
of the eigenstates of the system itself. The common form
is

d

dt
ρ̂S(t) = −i

[
ĤS , ρ̂S

]
− 1

2
V̂ †V̂ ρ̂S −

1
2
ρ̂S V̂

†V̂ + V̂ ρ̂S V̂
†,

(20)
where the V̂ are now operators representing the effect of
the reservoir on the system. We have essentially elimi-
nated the detailed dynamics of the reservoir in this form.
To arrive at the Lindblad master equation, we have made
three important assumptions. Eq.(12) says that the sys-
tem and reservoir are initially uncorrelated and there in-
teraction is turned on at t > 0. In expanding ρ̂

(I)
S (t)

to second order, we have made the assumption that the
interaction of the system with the reservoir is weak. Fi-
nally, we have assumed the reservoir itself has no corre-
lations between different transitions, thus being “memo-
ryless”.

We can use the Lindblad equation for a very simple ex-
ample involving a two level atom coupled to the vacuum,
undergoing spontaneous emission [2]. The coherent part
of the atom’s evolution is described by the Hamiltonian

Ĥ = ωσ̂z/2

where ω is the energy difference of the atomic levels and
σ̂z is one of the Pauli matrices defined by

σ̂x =
(

0 1
1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0
0 −1

)
(21)

The V̂ operator is defined as
√
γσ̂− where γ is the rate

of spontaneous emission and σ̂− is the atomic lowering
operator defined as

σ̂− =
(

0 0
1 0

)
.

From the definition one can simply see that this operator
connects the excited state to the ground state of this two-
level system. The Lindblad equation for this example
becomes

d

dt
ρ̂ = −i

[
Ĥ, ρ̂

]
+ γ [2σ̂−ρ̂σ̂+ − σ̂+σ̂−ρ̂− ρ̂σ̂+σ̂−]

where σ̂+ ≡ σ̂†− is the atomic raising operator. One can
switch to the interaction picture by writing

ρ̂(I)(t) = eiĤtρ̂(t)e−iĤt,

σ̂
(I)
− = eiĤtσ̂−e

−iĤt = e−iωtσ̂−,

and

σ̂
(I)
+ = eiĤtσ̂+e

−iĤt = eiωtσ̂+.

The equation of motion for ρ̂(I) is now

d

dt
ρ̂(I) = γ

[
2σ̂−ρ̂(I)σ̂+ − σ̂+σ̂−ρ̂

(I) − ρ̂(I)σ̂+σ̂−

]
.

This can be solved using a Bloch vector representation
(popular in quantum information) for ρ̂(I) which is de-
fined by

ρ̂ =
Î + λ · σ

2
. (22)

The solution is

λx = λx(0)e−γt

λy = λy(0)e−γt

λz = λz(0)e−2γt + 1− e−2γt.

This problem is an example of the application of the
Lindblad equation to include energy dissipation. This ex-
ample can be seen as an instance of the spin-boson model,
in which a small, finite dimensional quantum system in-
teracts with a bath of simple harmonic oscillators. The
original motivation for studying the spin-boson model
was to examine the effect of dissipation on macroscopic
tunneling of the flux trapped in a SQUID (Superconduct-
ing QUantum Interference Device) [3].

This evolution describe by the Lindblad equation is
equivalent to that of a quantum operation, E , written
as

ρ̂′ ≡ E(ρ̂). (23)

We can use the so called operator-sum representa-
tion to write the quantum operation as

E(ρ̂) =
∑

k

Êkρ̂Ê
†
k (24)

where the Êk are called the Kraus operators and are
defined as Êk = 〈ek|Û |e0〉 where |e0〉 is the initial state
of the environment (there is no loss of generality by as-
suming a pure state) and |ek〉 is the kth element of the
orthonormal basis for the state space of the environment.
For our two-level system, we have

ρ̂(I)(t) = Ê0ρ̂
(I)(0)Ê†

0 + Ê1ρ̂
(I)(0)Ê†

1.

with the Kraus operators, Êi, defined as

Ê0 =
(

1 0
0
√

1− γ′

)
Ê1 =

(
0
√
γ′

0 0

)
with γ′ = 1 − e−2tγ . A quantum operation is a gen-
eral tool for describing the evolution of quantum systems
in a wide variety of circumstances, including stochastic
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changes to quantum states. Like the Lindblad case, this
quantum operation is a description of energy dissipation.
The particular operators presented here are those of a
quantum operation called amplitude damping. This
type of problem is useful for describing the general fea-
tures of energy dissipation in a quantum system whether
it be an atom spontaneously emitting a photon, a spin
system at high temperature reaching equilibrium with its
environment, or the state of a photon in an interferometer
or cavity when it is subject to scattering and attenuation.
This type of characterization a quantum operation is a
general tool for describing the evolution of open quantum
systems. Apparently, it is actually more general than the
Lindblad equation approach. Since solving the Lindblad
equation allows one to determine the time dependence
of a density matrix, the result can also be express as a
quantum operation defined by

ρ̂(t) =
∑

k

Êk(t)ρ̂(0)Ê†
k(t), (25)

where Êk(t) are time-dependent operation elements, de-
termined from the solution of the master equation. A
quantum process, however, cannot always be written
down as a master equation since quantum operations may
describe non-Markovian dynamics. A quantum operation
formalism only describes quantum state changes and not
continuous time evolution. The quantum operation for-
malism directly resembles the mathematical form for a
quantum measurement. See [2] for more dicussion on
this.

The Lindblad equation has other limitations as well.
Consider a mixed state with a Hamiltonian which is a
function of the microstates themselves, i.e. Ĥ = Ĥ(|ψi〉).
As an example, when using Density Functional Theory
(DFT), the Hamiltonian is a function of the density, n,
where n =

∑
i |ψi〉〈ψi|. Thus, the Hamiltonian is dif-

ferent for each element of the ensemble, |ψi〉. One can
see from Eq.(5) that there is, in general, no closed equa-
tion of motion such as the Lindblad equation, for a sys-
tem like this where ρ̂ is a mixed state. Therefore, we
must try to find a stochastic differential equation to in-
clude the effects of an environment. If a damping term
is included in the Schrödinger equation, probability is no
longer conserved [4]. However, we can try to compensate
for this loss by adding a fluctuating term. This results in
a form for the Schrödinger-Langevin equation. To find
this equation, we start with

d

dt
|ψ(t)〉 = −iĤ|ψ(t)〉 − Û |ψ(t)〉+ `(t)V̂ |ψ(t)〉 (26)

where Û and V̂ are operators to be specified and `(t) is a
random fluctuating term usually taken to be white noise:

〈`(t)〉 = 0 〈`(t)`∗(t′)〉 = δ(t− t′) (27)

The Hamiltonian here is the one for the system we are
interested in, analogous to ĤS in the derivation of the

Lindblad master equation, and V̂ will again be the oper-
ator representing the interaction of the system with the
reservoir. For small ∆t, one obtains

|ψ(t+∆t)〉 =

[
1− iĤ∆t− Û∆t+

∫ t+∆t′

t

`(t′)dt′V̂

]
|ψ(t)〉.

For the Hermitian conjugate, we have

〈ψ(t+∆t)| = 〈ψ(t)|

[
1− iĤ∆t− Û∆t+ V̂ †

∫ t+∆t′

t

`∗(t′)dt′
]
.

If we take the scalar product and average over `, we get

〈ψ(t+ ∆t)|ψ(t+ ∆t)〉 = 〈ψ(t)|ψ(t)〉 − 2〈ψ(t)|Û |ψ(t)〉+
〈ψ(t)|V̂ †V̂ |ψ(t)〉.

From this, we can see that the average norm is conserved
when 2Û = V̂ †V̂ . Thus, we have found the form of the
Schrödinger-Langevin equation:

d

dt
|ψ(t)〉 = −iĤ|ψ(t)〉 − 1

2
V̂ †V̂ |ψ(t)〉+ `(t)V̂ |ψ(t〉 (28)

In it’s most general form, it can be written as

d

dt
|ψ(t)〉 = −iĤ|ψ(t)〉−1

2

∑
a

V̂ †
a V̂a|ψ(t)〉+

∑
a

`a(t)V̂a|ψ(t〉.

(29)
The Schrödinger-Langevin equation is useful for applica-
tions such as Stochastic Time Dependent Current Den-
sity Functional Theory (Stochastic TD-CDFT) [5], which
one can use to study many-particle systems in interac-
tion with external baths. Stochastic TD-CDFT has been
used to describe the interaction of an excited quantum
system with an external environment and its subsequent
decay into the ground state, which has been previously
impossible using standard DFT methods [6]. In this pa-
per, it is shown that for He+, the dynamics calculated
using the Lindblad master equation and those calculated
using Stochastic TD-CDFT (employing the Schrödinger-
Langevin equation) give comparable results. The results
of this study can be discussed in terms of quantum mea-
surement theory.
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